Batch processing of Top-k Spatial-textual Queries

Farhana M. Choudhury J. Shane Culpepper Timos Sellis
School of CSIT, RMIT University, Melbourne, Australia
{farhana.choudhury,shane.culpepper,timos.sellis}@rmit.edu.au

ABSTRACT

Top-k spatial-textual queries have received significant attention in the research community. Several techniques to efficiently process this class of queries are now widely used in a variety of applications. However, the problem of how best to process multiple queries efficiently is not well understood. Applications relying on processing continuous streams of queries, and offline pre-processing of other queries could benefit from solutions to this problem. In this work, we study practical solutions to efficiently process a set of top-k spatial-textual queries. We propose an efficient best-first algorithm for the batch processing of top-k spatial-textual queries that promotes shared processing and reduced I/O in each query batch. By grouping similar queries and processing them simultaneously, we are able to demonstrate significant performance gains using publicly available datasets.

Categories and Subject Descriptors
D.2.8 [Database applications]: Spatial-textual databases

General Terms
Algorithms, Experimentation, Performance

Keywords
Spatial-textual queries, Batch processing

1. INTRODUCTION

As a result of the increasing popularity of GPS enabled mobile devices, the volume of content associated with both a geographic location and a text description is growing rapidly on the web. Examples include points of interest such as stores or tourist attractions, social network posts, and location-based advertisements. In addition, the number of queries and the need to search content with local intent is also growing. For example, Google processes 5.7 billion searches per day, many of which are location-aware [1]. Another study shows that about 53% of Bing searches are geographical and have local intent [7].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GEORICH ’15 Melbourne, Australia
Copyright 20XX ACM X-XXXX-XX-X/XX/XX ...$15.00.

Figure 1: Example top-k spatial-textual queries

A Top-k Spatial-Textual Query is an important search task that has been extensively studied in the literature [3, 6, 8, 10]. Given a set of spatial-textual objects, a top-k spatial-textual query returns the k most similar objects to the query, where the similarity measure considers both spatial proximity and textual similarity. For example, consider the restaurants o1, o2, o3, and o4 shown in Figure 1. The table shows the terms and corresponding frequencies contained in the text description of each restaurant. Let q1 be a top-1 spatial-textual query with a location as shown in Figure 1 and the query keywords are (“sushi”, “noodles”). Even though restaurant o1 is closer to q1, o2 is the highest ranking result when both spatial and textual similarity are considered for q1.

In this paper, we study the problem of Batch Processed Top-k Spatial-Textual Queries. Our goal is to process a set of queries in a single pass. Consider the example in Figure 1 again. Let, q1, q2, and q3 be three different top-k spatial-textual queries to be batch processed. Assume that k = 1 for q1 and q3, and k = 2 for q2. The queries q1 and q3 both have the query keywords (“sushi”, “noodles”) and the query keywords of q2 are “sushi” and “seafood”. In this example, the result returned for q1 is {o1}, q2 is {o3, o4}, and the result of q3 is {o3} when taking both spatial and textual relevance into account.

Given a set of top-k spatial-textual queries, our aim is to compute the results for all the queries concurrently and efficiently. The main motivation of this problem is to improve the performance when processing a large number of queries together, especially if the results of the queries have large overlaps. An example application is to continuously process a stream of queries. At each time slot, the queries that have arrived can be processed as a batch, instead of processing individually. Consider another scenario where a large number of similar queries are issued by the users of the same area to get the news on a recent incident, for example, a road accident. The batch processing can be useful to optimize the overall performance by grouping such queries. Another application of the batch processing is as a pre-processing step for other query types. For example, a company might use a set of query logs to detect potential customers who found their products in prior searches. In this case, the results for each query in the log can be batch processed offline.

In related literature, Wu et al. [9] have studied a similar problem called Joint Top-k Spatial Keyword Query Processing. Example applications suggested by Wu et al. include multiple query opti-
mization by grouping/partitioning a large set of queries, and privacy aware query support by hiding a query among multiple fake queries. These queries could also benefit from the approaches proposed in this work. However, Wu et al. consider only the Boolean top-k spatial-textual queries where a query retrieves k objects closest to the query location containing all of the query keywords. The authors proposed a new index structure, the W-IR-tree, which uses a frequency based partitioning of the object terms for index construction. This index structure and associated pruning strategies are applicable for the Boolean top-k query where a relevant object should contain all the query keywords, thereby, not directly extensible to queries that consider both spatial and textual similarity.

To the best of our knowledge, we are the first to propose and address the Batch Processed Top-k Spatial-Textual Query problem. Given a set of top-k spatial-textual queries, we propose an efficient algorithm that processes all of the queries concurrently using a best-first approach. The key idea of the algorithm is to share the computation and I/O cost among all queries. This algorithm is generic and applicable to any existing spatial-textual index structure that can answer individual top-k queries. In summary, the key contributions of this paper are as follows:

- We introduce a novel problem, Batch Processed Top-k Spatial-Textual Queries that is useful in many real-life applications.
- We propose an efficient best-first algorithm that greatly reduces the overall computational costs by sharing the processing and I/O costs among the queries.
- We conduct an extensive experimental study to show the efficiency of our approach using publicly available datasets.

The rest of the paper is organized as follows: Section 2 gives an overview of the related work. Section 3 presents the problem definition. In Section 4, we describe our proposed algorithms. Finally, the experimental evaluation is shown in Section 5, and the paper is concluded in Section 6.

2. RELATED WORK

In this section we review relevant previous work on top-k spatial-textual queries and the joint processing of these queries.

2.1 Top-k spatial-textual queries

Given a set of spatial-textual objects, a top-k spatial-textual query returns a ranked list of k objects with the highest ranking scores, where the scoring function is a combination of the distance to the query location and the text relevance to the query keywords. Existing approaches depend primarily on variations in indexing data structures to answer a query efficiently [3, 6, 8, 10]. However, these methods are designed to answer queries individually. The computations and associated I/O costs are not shared among multiple queries, and queries are not processed concurrently. This leads to many disk reads and computations to be repeated, especially if the queries being processed are similar, i.e., the queries share a lot of keywords and are located close in space.

2.2 Joint top-k spatial-textual queries

Wu et al. [9] studied the joint top-k spatial-textual queries, where, given a set of queries, queries are processed jointly as a single query. They addressed the problem for only Boolean top-k queries, i.e., a query retrieves k objects according to the distance from the query location that contains all the query keywords. They introduce the W-IR-tree and a variant, the W-IBR-tree, along with the GROUP algorithm that can be used with the W-IR-tree as well as other existing indexes, e.g., the IR-tree, the CDR-tree [3, 8], etc. However, most of the pruning techniques proposed in [9] are limited to Boolean top-k queries. Moreover, the authors use the minimum bounding rectangle (MBR) of all the queries to estimate an upper bound on the distance to the k-th nearest object. This technique can lead to many unnecessary retrievals when the query locations are very sparse. Therefore, we investigate other alternatives to joint processing of top-k spatial-textual queries in our work.

3. PROBLEM STATEMENT

Let D be a geo-textual dataset where each object $o \in D$ is defined as a pair $(o.l, o.d)$. Here, $o.l$ represents the spatial location and $o.d$ is the associated text description. Let $q = (q.l, q.d, q.k)$ a spatial-textual query where $q.l$ is the query location, $q.d$ is the set of query keywords and $q.k$ is the number of objects to be returned as result. A Top-k spatial-textual query q returns a ranked list of $q.k$ most relevant spatial-textual objects from D according to a relevance function $STS(o.q)$. Furthermore, a spatial-textual query o is considered relevant to q, if $o.d$ contains at least one term $t \in q.d$. The Batch Processed Top-k Spatial-Textual Queries problem is to process a set Q of such queries concurrently. In this paper we use the following ranking function:

$$STS(o,q) = \alpha \cdot SS(o.q.l) + ((1 - \alpha) \cdot (1 - TS(o.q.d)))$$

where $SS(o.l,q.l)$ is the spatial proximity between $q.l$ and $o.l$, $TS(o.d,q.d)$ is the textual similarity between the query keywords and $o.d$, and the preference parameter $\alpha \in [0, 1]$ is used to define the importance of one measure relative to the other. The value of both measures are normalized within the range $[0, 1]$. A lower value of $STS(o,q)$ indicates a higher relevance between o and q.

Spatial proximity. The spatial relevance between $q.l$ and $o.l$ is defined as: $SS(o.l,q.l) = \frac{dist(o.l,q.l)}{d_{\text{max}}}$. where $dist(o.l,q.l)$ is the Euclidean distance between $o.l$ and $q.l$, and d_{max} is the maximum Euclidean distance between any two points in D.

Textual relevance. The text description $o.d$ is represented by a vector where each dimension corresponds to a distinct term in the document. The value of a term t in $o.d$ is computed using the language model [5] as:

$$\hat{p}(t|\theta,d) = (1 - \lambda) \frac{tf(t,o.d)}{|o.d|} + \lambda \frac{tf(t,C)}{|C|}$$

where $tf(t,o.d)$ is the number of occurrences of the term t in $o.d$, $tf(t,o.d)/|o.d|$ is the maximum likelihood estimate of term t in $o.d$; C is the concatenation of all documents in the collection, and λ is a smoothing parameter for Jelinek-Mercer smoothing. In the language model, the text relevance of an object o with respect to a query q is $TS(o.q.d) = \frac{\maxP}{\sum_{v \in q.d} \maxP}$, where \maxP is used to normalize the score into the range from 0 to 1 and is computed as, $\maxP = \sum_{v \in q.d} \maxP(\hat{p}(t|\theta,d))$.

4. PROPOSED APPROACH

We assume all objects $o \in O$ are stored on disk and indexed using a spatial-textual index. We use the IR-tree [3] to index the objects. A brief overview of the IR-tree is presented in Section 4.1 and a baseline approach is described in Section 4.2. In Section 4.3, the proposed algorithm for batch processing top-k spatial-textual queries is presented. In addition, we discuss the effect of different retrieval orders of the nodes of the tree in Section 4.4. The algorithms are generic and independent of the indexing method used.

4.1 The IR-tree

4.2 Baseline approach

The baseline for batch processing of top-k spatial-textual queries utilizes an existing algorithm \cite{3} that processes a single query at a time. As a batch processing problem consists of a set \(Q \) of top-k spatial-textual queries, the baseline algorithm simply processes the queries \(q \in Q \) individually.

The inputs of the baseline are a set of queries \(Q \) and a spatial-textual index (in our example, an IR-tree) over the set of objects \(O \).

The pseudo-code of the baseline is shown in Algorithm 1. When processing a query \(q \in Q \), a best-first traversal algorithm is used to retrieve the top-k objects. The algorithm uses a priority queue \(PQ \) to maintain the objects and the nodes that are yet to be visited (line 1.3). The value of \(STS(o,q) \) is used to order \(PQ \). In each iteration, the top node \(E \) of \(PQ \) (the most relevance node) is dequeued (line 1.6). If \(E \) is an object, \(E \) is included in the result for \(q \) (lines 1.7-1.8). The process for a query \(q \) terminates when \(q,k \) objects have been found (lines 1.9-1.10). Otherwise, the elements of \(E \) are read from the disk and the elements that contain at least one query keyword from \(q,d \) are added to the queue (lines 1.12-1.14). Finally, the algorithm returns the results for all of the queries in \(Q \).

\begin{algorithm}
1.1 Initialize an array \(H \) of \(\mid Q \) min-priority queues to order the top-k results for each query.
1.2 for each \(q \in Q \) do
1.3 Initialize a min-priority queue \(H_q \).
1.4 \(PQ \leftarrow \text{ENQUEUE}(\text{IRtree}(\text{root}),0) \).
1.5 while \(PQ \) not empty do
1.6 \(E \leftarrow \text{DEQUEUE}(PQ) \).
1.7 if \(E \) is an object then
1.8 \(H_q \leftarrow \text{ENQUEUE}(E,\text{STS}(E,q)) \).
1.9 if \(\text{SIZEOF}(H_q) \geq q,k \) then
1.10 break.
1.11 else for each element \(e \in E \) do
1.12 if \(q \cap \text{set} \neq \emptyset \) then
1.13 \(PQ \leftarrow \text{ENQUEUE}(E,\text{STS}(E,q)) \).
1.14 end for element \(e \in E \) do
1.15 return \(H \).
\end{algorithm}

A trace of processing required for the baseline is sketched in Table 3 where the data from Figure 2 for the queries \(q_1,q_2 \), and \(q_3 \) are used. Here, \(\alpha = 0.5 \), \(q_1.d = \{t_2,t_3\} \), \(q_1.k = 1 \); \(q_2.d = \{t_1\} \), \(q_2,k = 2 \); and \(q_3.d = \{t_1,t_3\} \), \(q_3,k = 1 \).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Term} & \textbf{InvFile 1} & \textbf{InvFile 2} & \textbf{InvFile 3} & \textbf{InvFile 4} \\
\hline
\textbf{t_1} & \{o_1,1\} & \{o_3,5\} & \{o_4,1\} & \{o_6,1\},\{o_7,2\} \\
\textbf{t_2} & \{o_1,4\} & \{o_3,5\} & \{o_4,1\} & \{o_6,1\} \\
\textbf{t_3} & \{o_2,1\} & \{o_3,2\} & \{o_7,3\} & \{o_7,3\} \\
\textbf{t_4} & \{o_7,3\} & \{o_7,3\} & \{o_7,3\} & \{o_7,3\} \\
\hline
\end{tabular}
\caption{Posting lists of the leaf nodes of example IR-tree}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Term} & \textbf{InvFile 5} & \textbf{InvFile 6} & \textbf{InvFile 7} \\
\hline
\textbf{r_1} & \{o_1,5\},\{o_2,5\} & \{o_4,1\},\{o_5,2\} & \{o_5,2\},\{o_6,4\} \\
\textbf{r_2} & \{o_4,1\},\{o_5,2\} & \{o_5,2\},\{o_6,4\} & \{o_6,4\} \\
\textbf{r_3} & \{o_4,1\},\{o_5,2\} & \{o_5,2\},\{o_6,4\} & \{o_6,4\} \\
\textbf{q_2} & \{o_1,5\} & \{o_2,5\},\{o_3,5\},\{o_4,1\} & \{o_6,4\} \\
\textbf{q_3} & \{o_1,5\},\{o_2,5\} & \{o_3,5\},\{o_4,1\} & \{o_6,4\} \\
\hline
\end{tabular}
\caption{Posting lists of the non-leaf nodes of example IR-tree}
\end{table}
top-\(k\) results (line 2.1). For each query \(q \in Q\), we also maintain a min-priority queue \(PQ_q\) to track the relevant nodes and the objects, where the key is the corresponding relevance score for \(q\). The algorithm will continue to execute as long as the set \(Q\) is non-empty.

In each iteration, a priority queue \(PQ_q\) is selected at random and the top element \(E\) of that queue is processed (lines 2.6-2.7). We explain the reasoning behind this selection method and discuss the effect of other selection orders in Section 4.4. If \(E\) is an object, the top element \(o\) of \(PQ_q\) is dequeued and inserted into \(H_q\) as long as \(o\) is an object and \(H_q\) has less than \(q.d\) elements for each \(PQ_q\) (lines 2.8-2.12). In this manner, all the queries that have any object including \(E\) in the top of their queues are considered. If \(PQ_q\) is empty or \(H_q\) has \(q.d\) elements then \(q\) is marked as finished, and discarded from further computation (lines 2.13-2.14).

If \(E\) is not an object, then the elements of \(E\) are read from disk. For each query \(q \in Q\), if the corresponding \(PQ_q\) contains \(E\), the elements of \(E\) that have at least one keyword of \(q.d\) are enqueued in \(PQ_q\). The node \(E\) is then removed from these queues (lines 2.16-2.22). The process terminates when the results for all of the queries in \(Q\) are found. Finally, the results represented as an array of priority queues \(H\) is returned.

Algorithm 2: Batch processing Top-\(k\) Spatial-Textual Queries

```plaintext
2.1 Initialize an array \(H\) of \(|Q|\) min-priority queues to order the top-\(k\) results for each query.
2.2 Initialize an array \(PQ\) of \(|Q|\) min-priority queues to track node traversal for each query.
2.3 for each \(q \in Q\) do
2.4 \(PQ_q\) ← ENQUEUE(Rtree(root), 0)
2.5 while \(Q\) not empty do
2.6 Select \(PQ_q\) randomly.
2.7 \(E\) ← TOP(\(PQ_q\))
2.8 if \(E\) is an object then
2.9 for each \(o \in E\) do
2.10 while \(PQ_q\) not empty and SIZEOF(\(H_q\)) < \(q.k\) and 
2.11 \(\text{Top}(\(PQ_q\))\) is an object do
2.12 \(o\) ← DEQUEUE(\(PQ_q\))
2.13 \(H_q\) ← ENQUEUE(\(o\), \(\text{ST}(o, q)\))
2.14 if \(PQ_q\) is empty or SIZEOF(\(H_q\)) ≥ \(q.k\) then
2.15 Mark \(q\) finished.
2.16 else READ(\(E\))
2.17 for each \(e \in E\) do
2.18 if \(E\) is \(e\) then
2.19 for each element \(c \in E\) do
2.20 if \(q.d \cap c.d \neq \emptyset\) then
2.21 \(PQ_q\) ← ENQUEUE(\(e\), \(\text{ST}(e, q)\))
2.22 Remove \(E\) from \(PQ_q\)
2.23 Return \(H\)
```

Using other index structures. The key idea of the algorithm is to share the I/Os and processing among queries. When an object is retrieved from the disk for a query, the score of the object is updated for all the queries that share this object in their corresponding queues. The other processing steps of the Algorithm 2 are same as the processing of a single query. Therefore, this algorithm is easy to extend for other index structures.

4.4 Selection order of the nodes

In this section we discuss the selection order of the tree nodes in each iteration of our algorithm.

Arbitrary selection. Recall that for each query \(q\), the corresponding priority queue \(PQ_q\) is sorted according to the maximum relevance of nodes. Although in each iteration, the top element \(E\) is dequeued for a random query, all of the queries that have any object including \(E\) in the top of their queues are considered in lines 2.10-2.14 in the same iteration. Thus, we are applying a best-first approach not only for the query \(q\), but also for other queries concurrently in each iteration. Moreover, only those nodes and objects are retrieved that are also required for individual processing, and a node or an object is retrieved only once.

In the best-first approach, the computation for a query \(q\) can be safely terminated if \(q.d\) objects are found or \(PQ_q\) is empty. The lines 2.13-2.14 ensure the terminating conditions for all queries regardless of the selection of \(E\). Therefore, the algorithm is actually independent of the retrieval order of the nodes. We explain this further by contrasting with another retrieval order in the following.

Selecting the node that is the top one in the maximum number of queues. Let the node \(E\) that is the top element of the maximum number of queues be selected in each iteration. According to lines 2.10-2.12, if \(E\) is an object, then any object including \(E\) that is in the top of any queue is checked for being a result object of the corresponding query. If \(E\) is not an object, then the elements of \(E\) are enqueued in \(PQ_q\) if they have at least one keyword of \(q.d\) and \(PQ_q\) contains \(E\). In both conditions, all of the computations are the same as selecting \(E\) randomly. The computations do not rely on the selection of \(E\).

Moreover, keeping track of the node that is the top of the maximum number of queues in each iteration may require some extra computation. Therefore, the random selection of a node is preferable. Table 4 demonstrates the execution of Algorithm 2 for the data from Figure 2. Note that the total number of iterations will be the same for any order of selecting \(E\). As shown in the table, the priority queues of the queries are initialized with the root node of the tree. Consider iteration 2 as an instance where node \(R_3\) is selected. Node \(R_3\) is present in the priority queues of the queries \(q_3\) and \(q_5\), so the elements of \(R_3 - R_1\) and \(R_3 - \) are retrieved from disk. Node \(R_1\) and \(R_3\) are enqueued in the priority queues of \(q_3\) and \(q_5\) along with the corresponding relevance scores. Then, node \(R_5\) is removed from these queues.

5. EXPERIMENTAL EVALUATION

In this section, we present our results on evaluating the performance of our proposed algorithm for Batch Processed Top-\(k\) Spatial-Textual Queries and compare it with the baseline approach. All indices and algorithms are implemented in Java. The experiments were run on a 24 core Intel Xeon E5 – 2630 running at 2.3 GHz using 256 GB of RAM, and 1TB 6G SAS 7.2K rpm SFF (2.5-inch) SC Midline disk drives. The Java Virtual Machine Heap size was set to 4 GB. All index structures are disk resident, and the page size was fixed at 4 kB.

5.1 Dataset and queries

All experiments are conducted using the Yahoo i3 Flickr dataset. A total of 1 million image tags that are geo-tagged and contain at least one user specified tag were extracted from the collection and used for the experiments. The locations and tags are used as the location and text description of the spatial-textual objects in our problem. Table 5 lists the properties of the dataset. To evaluate scalability, three additional datasets of 2 million, 4 million, and 8 million were generated for all the queries that share this object in their corresponding queues. The other processing steps of the Algorithm 2 are same as the processing of a single query. Therefore, this algorithm is easy to extend for other index structures.

We generate the query sets using the dataset as follows. First, an object is picked randomly from the dataset and the location of the object is fed into the spatial-textual query generation module.

Table 4: The example steps of the batch processing approach

<table>
<thead>
<tr>
<th>Iteration</th>
<th>k</th>
<th>PQ_k</th>
<th>H_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.4)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_2, 0.1), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.2), (R_2, 0.3), (R_3, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td>2</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.2), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.2), (R_2, 0.25), (R_3, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td>3</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_2, 0.3), (R_3, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_2, 0.25), (R_3, 0.3), (R_3, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td>4</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.2), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.2), (R_2, 0.3), (R_3, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td>5</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_2, 0.3), (R_3, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_2, 0.25), (R_3, 0.3), (R_3, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td>6</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.6), (R_1, 0.7)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.4), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_3, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td>7</td>
<td>R_1</td>
<td>$(R_1, 0.2), (R_1, 0.6), (R_1, 0.7)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_3, 0.6)$</td>
<td>$-$</td>
</tr>
<tr>
<td>8</td>
<td>R_1</td>
<td>$(R_1, 0.3), (R_1, 0.4), (R_1, 0.6), (R_1, 0.7)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td>9</td>
<td>R_1</td>
<td>$(R_1, 0.3), (R_1, 0.4), (R_1, 0.6), (R_1, 0.7)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td>10</td>
<td>R_1</td>
<td>$(R_1, 0.3), (R_1, 0.4), (R_1, 0.6), (R_1, 0.7)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>$(R_1, 0.26), (R_1, 0.3), (R_2, 0.5)$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Table 5: Description of dataset

<table>
<thead>
<tr>
<th>Property</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of objects</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Total number of unique terms</td>
<td>166,317</td>
</tr>
<tr>
<td>Average number of unique terms per object</td>
<td>6.9</td>
</tr>
<tr>
<td>Mode number of unique terms per object</td>
<td>3</td>
</tr>
<tr>
<td>Total number of terms in dataset</td>
<td>6,936,385</td>
</tr>
</tbody>
</table>

object is used as the query location. Then, a pre-defined number of words are randomly selected from the object as the query keywords.

A pre-defined number of these queries are created to be the set of input queries Q for the batch processing problem. The default number of queries in a batch is 100. In this work, we generate 100 such batches and report the average performance.

5.2 Performance Evaluation

In this section, we evaluate the performance of the baseline and our proposed approach described in Section 4.3 by varying the parameters listed in Table 6. In all experiments, we employ the default settings to study the impact on: (i) the mean I/O cost (number of pages accessed) per query (MIOCPQ) of a batch; and (ii) the mean runtime per query (MRPQ) of a batch, while varying a single parameter. As multiple layers of cache exist between a Java application and the physical disk, we report simulated I/O costs in the experiments instead of physical disk I/Os. The number of simulated I/Os is increased by 1 when a node of the tree is visited. When an inverted file is loaded, the number of simulated I/Os is increased by the number of blocks (4 KB per block) for storing the list.

In the experiments, the performance is evaluated using cold queries. The runtimes for multiple runs are shown as boxplots, where each boxplot summarizes the values as follows: the solid line indicates the median; the bounding box shows the first and third quartiles; the whiskers show the range, up to 1.5 times of the interquartile range; and the outliers beyond this value are shown as separate points. The average values are shown as connecting lines.

Varying k. In this experiment, we vary the value of k and investigate the effect. The result is shown in Figure 4. Here, both the runtime and the I/O cost for each method increase as k increases. Since the batch processing algorithm visits the disk pages only once if they are shared among the queries, the cost of our proposed method is significantly lower than the baseline. Furthermore, the advantage of the batch processing algorithm increases when k increases. The height of the boxplots indicate that the runtime of multiple runs do not differ much from one another.

Varying α. Figure 5 reports the result of the experiment where we study the effect of varying α. A higher value of α indicates more preference to spatial similarity. As the location of queries in a batch is expected to be sparse, a higher value of α leads to fewer shared IR-tree nodes. Therefore, the cost of batch processing increases as α increases. On average our algorithm requires 4 times less I/O than the baseline.

Varying the number of keywords per query. We vary the number of keywords per query in a batch from 1 to 6 and investigate the effect on performance in Figure 6. The mean I/O cost per query (MIOCPQ) and the mean runtime per query (MRPQ) in the baseline method increases proportionally with the increase in the number of keywords per query in a batch, as more nodes become relevant to these queries. In contrast, the I/O cost in our proposed algorithm remains almost constant as a node is retrieved at most once and processed for all queries concurrently. The runtime of our al-

Table 6: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1, 10, 20, 50</td>
<td>10</td>
</tr>
<tr>
<td>α</td>
<td>0.1, 0.3, 0.5, 0.7, 0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>θ</td>
<td>400, 800, 1600, 3200, 6400</td>
<td>1000</td>
</tr>
<tr>
<td>No. of query keywords</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>3</td>
</tr>
<tr>
<td>No. of unique query keywords, w</td>
<td>5, 10, 20, 50, 100</td>
<td>20</td>
</tr>
<tr>
<td>No. of objects</td>
<td>1M, 2M, 4M, 8M</td>
<td>1M</td>
</tr>
</tbody>
</table>
Figure 6: Effect of varying the number of keywords per query

Figure 7: Effect of varying \(w \) in a batch (w).

Figure 8: Scalability

Through extensive experiments using publicly available datasets, we show that our approach outperforms the baseline in terms of I/O costs and total runtime. Our approach is particularly amenable to queries which share a large number of keywords, and/or are in close proximity to each other. In future work, we will explore alternative algorithms to minimize computational costs in groups of queries, and explore efficient approaches to group similar queries into batches in realtime.

7. ACKNOWLEDGMENTS

This work was supported by the Australian Research Council’s Discovery Projects Scheme (DP140101587). Shane Culpepper is the recipient of an Australian Research Council DECRA Research Fellowship (DE140100275). Farhana Choudhury is the recipient of a scholarship from National ICT Australia. We thank Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu for providing the implementation of the IR-tree in [2].

References

