Towards Efficient and Effective Query Variant Generation

Rodger Benham
RMIT University
Melbourne, Australia

J. Shane Culpepper
RMIT University
Melbourne, Australia

Luke Gallagher
RMIT University
Melbourne, Australia

Xiaolu Lu
RMIT University
Melbourne, Australia

Joel Mackenzie
RMIT University
Melbourne, Australia

ABSTRACT
Relevance modeling and data fusion are powerful yet simple approaches to improving the effectiveness of Information Retrieval Systems. For many of the classic TREC test collections, these approaches were used in many of the top performing retrieval systems. However, these approaches are often inefficient and are therefore rarely applied in production systems which must adhere to strict performance guarantees. Inspired by our recent work with human-derived query variations, we propose a new sampling-based system which provides significantly better efficiency-effectiveness trade-offs while leveraging both relevance modeling and data fusion. We show that our new end-to-end search system approaches the state-of-the-art in effectiveness while still being efficient in practice. Orthogonally, we also show how to leverage query expansion and data fusion to achieve significantly better risk-reward trade-offs than plain relevance modeling approaches.

1 INTRODUCTION
Query expansion is a classic technique used in search systems to improve the effectiveness of a search engine. In general, it works by taking a user’s query \(q \) and running it against the index to retrieve a top-\(k \) set of documents assumed to be relevant, and then selecting \(t \) terms to append to the user query to form a new query \(q' \). One drawback of query expansion is that several relevant documents must be in the top-\(k \) list in order induce “useful” expansion terms [9]. Query expansion techniques may also use external resources such as a thesaurus to find related terms [24].

However, the performance of any single query can vary widely across different collections. Benham et al. [8] showed that the most effective query representation of an information need on one corpus is often not the best performing query on a different (but similar) corpus. They showed that one method of minimizing the variance is to combine data fusion with multiple query variations of a single topic / information need. This idea was an extension of previous work which explored various trade-offs in data fusion while leveraging both relevance modeling and data fusion. We show that our new end-to-end search system approaches the state-of-the-art in effectiveness while still being efficient in practice. Orthogonally, we also show how to leverage query expansion and data fusion to achieve significantly better risk-reward trade-offs than plain relevance modeling approaches.

used to produce more effective relevance models than when using only the target collection.

Building on these two ideas, we present a new approach inspired by the best performing system run in the TREC 2004 Robust Track – p1rcRB04t3 [17]. Our goal is to mimic the performance achievable through fusion over human query variations [7] by combining relevance models induced from multiple external corpora.

A significant drawback to this approach — despite its effectiveness and risk-sensitivity properties — is that it is very expensive in practice. We show how to overcome this limitation by generating many short synthetic queries using a stochastic random process and fusing their result lists. We then explore how these synthetic queries compare with user-generated queries, and demonstrate how query expansion can also be optimized to reduce risk sensitivity.

We explore two related research questions in this paper:

Research Question (RQ1): Can data fusion and query expansion be combined to produce state-of-the-art effectiveness in classically “hard” test collections?

Research Question (RQ2): Can our new approaches be optimized to be efficient, effective, and minimize risk?

2 BACKGROUND
Relevance Modeling. The classic relevance model is induced from the highest ranking top-\(k \) documents for a query in a first stage search [1, 20]. A relevance model is a pseudo-feedback-based query model that can be viewed as an expanded query [12, 22, 27, 31]. Pseudo-feedback-based query models are generally clipped by zeroing the probabilities of all but the \(t \) highest probability terms in the model [1, 30]. After re-normalization, this yields an \(RM1 \) model. The \(RM1 \) model is usually applied by anchoring with the original query terms in order to prevent query drift, which is the \(RM3 \) model [1]. These models are highly effective in practice, but also tend to be computationally expensive, and few papers have attempted to address this issue [10, 13].

Data Fusion. Rank fusion algorithms can broadly be classified into two categories — score-based fusion and rank-based fusion. The earliest algorithms such as CombSUM and CombMNZ are score-based [16]. Rank-based rank fusion algorithms simply rely on the order of documents in each observed result list [4, 11]. Details are beyond the scope of this paper. We use Reciprocal Rank Fusion (RRF) [11] in this work as previous experience has shown it to be performant on the test collections used.
User Query Variations. The work of Belkin et al. [5] and Belkin et al. [6] is among the earliest to explore the notion of fusing multiple query variations to produce a single ranked retrieval list. Bailey et al. [4] recently proposed a new rank-based fusion method, that more aggressively discounts documents ranked deeper in runs based on a more controllable user-model gain function, which they refer to as Rank Biased Centroids (RBC). Fusion over user query variations (UQVs) is used as our ground truth in this work as they represent the best-performing systems in terms of effectiveness and efficiency trade-offs on several classic TREC collections, but require human effort (to produce the query variations). Our goal is to emulate this performance through automated means.

External Corpora. A huge body of work has focused on improving search quality with external corpora. Here, we primarily leverage the work of Kwok et al. [18, 19] and Diaz and Metzler [14]. These are of particular interest for our approach as the work of Kwok et al. attempted to use multiple representations of an information need using external corpora, which resulted in the best performing systems in the TREC 2004 Robust Track [29]. Diaz and Metzler later produced a system that was even more effective by inducing relevance models from large external corpora. We combine both of these ideas in order to automatically emulate the results achievable using UQVs.

3 APPROACH

Here we briefly describe our end-to-end approach to search, using an approach we denote as RMQV. The key idea is to try and induce query variations automatically using external corpora in such a way as to mimic the performance achievable using query variations created with human intervention. In order to achieve this, we leverage prior work on relevance modeling with external corpora [14, 18, 19]. Our key contribution is to induce a weighted sampling with replacement approach over relevance models combined with fusion in order to bypass the poor efficiency of running a single weighted query over all of the clipped terms in the relevance model, which is described in Figure 1. A relevance model is an estimated probability distribution over all terms in the vocabulary given a query \(q\). Since true relevance of documents is rarely available a priori, we assume the top ranked documents are relevant (pseudo relevance feedback), and induce an RM1 model using:

\[
p(w|\text{RM1}) = p(w|q) = \sum_{d \in L_c} p(w|d)p(d|q)
\]

Note that we assume both models are clipped and renormalized appropriately. In this work, we use both RM1 and RM3.

In addition, we propose a new sampling-based version which attempts to capture the expressive power of RM3, without the computational costs. The key idea is to sample terms from both the expansion set \(T'\) and the original query \(q\). We use a weighted probability sampling process over \(T'\), where each term \(t \in T'\) has a selection probability of:

\[
\hat{p}(t|L_c) = \frac{\sum_{d \in L_c} p(t|d)p(d|q)}{\sum_{d \in L_c} p(d|q) \sum_{w \in T'} p(w|d)}.
\]

Here, \(p(d|q)\) is the normalized query likelihood, and \(L_c\) is the list of top-\(k\) documents from collection \(c\) (this is important since our goal is to induce relevance models from multiple external corpora), \(\eta = |L_c|\). In turn, this can be used to anchor the original query terms to produce the RM3 query model:

\[
p(w|\text{RM3}) = (1 - \lambda)p(w|q) + \lambda p(w|\text{RM1})
\]

3. APPROACH

Here we briefly describe our end-to-end approach to search, using an approach we denote as RMQV. The key idea is to try and induce query variations automatically using external corpora in such a way as to mimic the performance achievable using query variations created with human intervention. In order to achieve this, we leverage prior work on relevance modeling with external corpora [14, 18, 19]. Our key contribution is to induce a weighted sampling with replacement approach over relevance models combined with fusion in order to bypass the poor efficiency of running a single weighted query over all of the clipped terms in the relevance model, which is described in Figure 1. A relevance model is an estimated probability distribution over all terms in the vocabulary given a query \(q\). Since true relevance of documents is rarely available a priori, we assume the top ranked documents are relevant (pseudo relevance feedback), and induce an RM1 model using:

\[
p(w|\text{RM1}) = p(w|q) = \sum_{d \in L_c} p(w|d)p(d|q)
\]
retrieval process uses the Bmw dynamic pruning algorithm [15].
Next, a relevance model is created using L_c, which provides the ex-
pansion terms and their associated $\hat{p}(t|L_c)$. The number of sample
terms $|q|$ for the current query variant is randomly selected, fol-
lowed by $|\hat{q}|$ terms being sampled based on $\hat{p}(t|L_c)$. This sampling
process is repeated several times resulting in a number of query
variations sampled from the same relevance model. These queries
are then executed concurrently on the target collection, using the
Bmw algorithm. Finally, these top-k document lists are fused using
RRF. This process is easily extended to multiple external corpora
by performing these steps in parallel for all corpora.

A key bottleneck in the retrieval process for term expansion is
relevancy model construction. To reduce the computational over-
head of this stage, we extend the work of Asadi and Lin [3] and
implement a simple document vector representation where each
document vector consists of $(t, f_{d,t})$ pairs, where t is a term in
vocabulary V and $f_{d,t}$ is the within document frequency of term t in
document d. In practice, two separate sequences for each document
are stored. First, the term identifiers are stored in ascending order,
which are then delta compressed using the QMX codec [28]. Next,
we store an aligned sequence of term frequencies, also compressed
using QMX but without delta compression (as this list is not guaran-
teed to be monotonic). When a given document vector is required,
the entire document vector is decompressed at once since the entire
vector is required for computing the relevancy model.

We now evaluate the merit of our RMQV approach by placing it
into context with related baselines in the literature.

4 EXPERIMENTS

In this section, we discuss the datasets used, effectiveness baselines,
query expansion timings, risk-profiles and place all of these con-
siderations into context with our new query sampling approach.
All baseline runs used to demonstrate efficiency, effectiveness and
risk-reward profiles are generated using an extended version of the
VBmw [23] codebase1 modified to induce relevancy models for
query expansion and support additional ranking algorithms, with
the exception of the TREC Best TREC run submitted to the Robust04
track.

Hardware Configuration. Our experiments are conducted on an
idle Linux Server with 256 GiB of RAM and two Intel Xeon E5-
2690 v3 CPUs. All algorithms were implemented with C++11 and
compiled with GCC 6.3.1 using the highest optimization settings.
Threading was implemented using the C++ STL threading libraries,
and we use up to 48 threads at any one time.

Datasets. To evaluate our approach, we follow the methodology
from Diaz and Metzler [14] and use the RobustReduced corpus,
also known as TREC 452, as our main collection. The RobustReduced
collection has the benefit of reducing noise in the collection, provid-
ing better expansion terms. In order to perform a fair comparison,
all runs used in the comparison are filtered to include the same
documents.

Three external corpora are used: a variant of the BIGNEWS
collection [14], the recent NYT corpus [2] and Wikipedia from the
ClueWeb09B collection. The BIGNEWS variant is constructed using

Table 1: Collections used in experiments. The RobustReduced is the
target collection, while all others are used for relevance modelling.

<table>
<thead>
<tr>
<th>Collection</th>
<th># Docs</th>
<th># Unique Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RobustReduced</td>
<td>472,525</td>
<td>500,641</td>
</tr>
<tr>
<td>ExternalNews</td>
<td>3,470,990</td>
<td>1,763,551</td>
</tr>
<tr>
<td>NYT</td>
<td>1,855,658</td>
<td>2,969,894</td>
</tr>
<tr>
<td>WikiLYNX</td>
<td>5,957,529</td>
<td>11,190,159</td>
</tr>
</tbody>
</table>

1http://github.com/rmit-ir/RMQV
2Reduced Robust04 collection: lntool.github.io/Ivory/docs/exp-trec45.html

our available resources, which includes Aquaint 1&2 collections,
Korea Times (NTCIR 9), Mainichi Daily (NTCIR 9), NYT (NTCIR 9)
and Tipster disks 1–5. In order to make a distinction between the
collection used by Diaz and Metzler [14] and our variant, we name
this variant ExternalNews, as we did not have access to all of the
collections used in their original experiments. The second external
corpus is referred to as NYT and is from the TREC 2017 CORE Track,
2007. Wikipedia documents from ClueWeb-B 2009 are pre-parsed
using Lynx, and referred to as WikiLYNX.

We also use the TREC 2017 CORE user query variations from
Benham et al. [8] to contrast the effectiveness of our synthetic
queries with queries generated by users. Eight participants con-
tributed 3,151 queries with an average length of 5.48 terms per
query, where 93.7% are unique.

All collections used are indexed using the Krovetz stemmer with
stopwords removed.

System Configuration. We use 5-fold cross-validation for parameter
 tuning with the following sweeps performed: the number of
feedback documents $L_c \in \{5, 10, 25, 50, 100\}$, the number of expan-
sion terms $|T'| \in \{5, 10, 25, 50, 100\}$, the number of query samples
per collection $|Q'| \in \{2, 4, 6, 8, 10\}$, and the RM3 anchoring param-
eter $\lambda \in \{0.0 \ldots 1.0\}$. Note that in our sampling process, the query
length of a sampled query is a random integer generated between
5 and 15.

Baseline Effectiveness. We now attempt to answer RQ1. Table 2
summarizes the effectiveness of every system compared in this
paper, representing different retrieval models. The BM25 method is
a bag-of-words run, providing a lower bound for effectiveness as a
simple, yet efficient retrieval technique. The L2p system was pro-
posed by Lu et al. [21], and is an efficient and effective alternative
to commonly used Indri SDM models. RM3 is the RM3 query expan-
sion model over the target corpora. The UQV-RRF run is generated by
fusing human-derived query variations executed on BM25 using
RRF [7]. The TREC Best run is a title query run with the highest AP
score submitted to the TREC Robust04 track by Kwok et al. [17]
for their system pirc8B04t3 that uses web assistance and fusion.
RM3-ExtRRF fuses the top-k lists generated from all external corpora
relevance models using RRF, and RMQV is our newly proposed
sampling model.

Across all system comparisons, we see that RM3-ExtRRF outper-
forms all of the standard baselines. RMQV performs similarly to
RM3, but as we shall see shortly has several other advantages that
are not obvious when thinking in terms of only effectiveness. For
upper bounds on effectiveness, the human-generated queries from
Table 2: Baseline system effectiveness. The TREC Best run had the highest AP score in the Robust04 track. Note all evaluations are formed using the reduced qrels. Entries marked †, ‡ correspond to a two-tailed pairwise t-test using Bonferroni correction at 95%, 99% confidence intervals respectively. Comparisons are relative to RM3.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>AP</th>
<th>NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM25</td>
<td>$k_1 = 0.9, b = 0.4$</td>
<td>0.263†</td>
<td>0.454</td>
</tr>
<tr>
<td>L2p</td>
<td>$\lambda = 0.4$</td>
<td>0.278‡</td>
<td>0.476</td>
</tr>
<tr>
<td>RM3</td>
<td>5-fold</td>
<td>0.306</td>
<td>0.473</td>
</tr>
<tr>
<td>UQV-RRF</td>
<td>$k = 60$</td>
<td>0.341†</td>
<td>0.567‡</td>
</tr>
<tr>
<td>TREC Best</td>
<td>—</td>
<td>0.348‡</td>
<td>0.534‡</td>
</tr>
<tr>
<td>RM3-ExtRRF</td>
<td>5-fold</td>
<td>0.325†</td>
<td>0.518‡</td>
</tr>
<tr>
<td>RM3QV</td>
<td>5-fold</td>
<td>0.322</td>
<td>0.508†</td>
</tr>
</tbody>
</table>

UQV-RRF perform best in terms of NDCG@10 across all models. Although query fusion can be relatively fast and effective as the terms are unweighted allowing dynamic pruning to work effectively, it requires access to appropriately clustered queries generated by humans. Although, this is not the case for AP, where the entry TREC Best still outperforms all others.

So, in summary, automatic query expansion over multiple external corpora, when combined with fusion, is highly effective. While our current configuration is still unable to match the performance of fusion over human query variations (which is not an automatic process), it is clearly a step in the right direction. We believe further work on RQ1 using the techniques described in this paper will close this gap even more.

Query Processing Configuration. Our proposed system implements a range of dynamic pruning algorithms for efficient top-k retrieval. We ran several preliminary experiments to select which algorithms should be deployed at each stage, which is not shown here in the interest of succinctness. In all pipelines, we use BMW [15] to process the initial bag-of-words queries (whether it is in the first stage of the RM approaches, or the first and second stages of the RMQV approach). However, we found that MAXSCORE [26] is the most efficient approach for processing weighted RM3 queries. Any combination of the WAND, BMW, VBMAW and MAXSCORE algorithms can be used in either of the processing stages, and implementations are available in the source repository. We leave further investigation of the processing strategies to future work.

Efficient Query Variation Expansion. A long-standing issue for retrieval processes that incorporate query expansion is that while effective, they fail to meet efficiency constraints in many real-world applications. This can be observed in Table 3 where the median response time for an RM3 query is several orders of magnitude slower than the bag-of-words retrieval. Note that the number of stage one posting evaluations is much higher for the bag-of-words runs as the top 1,000 documents are retrieved, whereas a RM3 run usually retrieves only the top 10 documents during the stage one. The stage two posting evaluations for RM3 are the result of the expanded query – more query terms equates an increase in posting evaluations, a stark contrast to the evaluations required by the bag-of-words retrieval. Both RM3 and RM3-ExtRRF construct lengthy weighted queries commonly consisting of around 50 terms (empirically). The RM3-ExtRRF method has the highest efficiency cost due to the fact that three distinct relevance models are required to be induced from each external corpus (of varying size) in parallel; the newly formed expansion queries are executed on the target collection also in parallel; then RRF fusion is used to obtain the final ranked list. Although parallel processing is applied, this approach is still slower than RM3 as the (larger) external collections result in more processing for RM construction in the first stage.

Notably, the costs of inducing the relevance model(s) and the cost of long-weighted queries make the entire retrieval process impractical in even small collections. The number of postings which must be scored by the models, as shown in Table 3, suggests that significant performance improvements when using the full model are very unlikely.

Table 3 shows that the dominant cost in Query Expansion is correlated with the number of expansion terms. This indicates that limiting the number of terms selected might provide greater opportunities for efficiency improvements, but how can we find the best compromise between efficiency and effectiveness in this scenario? An interesting secondary aspect of Table 4 shows the efficiency cost of constructing the relevance model along with the choice of the number of feedback documents to use is negligible when compared to the second stage retrieval. The real performance bottleneck is processing long weighted queries.

Figure 2 shows the efficiency of the three query expansion pipelines implemented in our new system. RM3 and RM3-ExtRRF are the graphical interpretation of the timings reported in Table 3,
We see that while the retrieval effectiveness of RM3 approaches, with greater risk-sensitivity than a standard RM3 approach, but not quite as sensitive to risk as RM3-ExtRRF. Finally, while UQV-RRF demonstrates stronger improvements in effectiveness for many topics than the above approaches, again, it is not quite as risk-sensitive as RM3-ExtRRF.

Table 5 shows the risk exhibited by each system quantified using T_{risk}. A T_{risk} value greater than 2 indicates no significant risk of harming the baseline, while a value less than -2 indicates a statistically significant risk of harming the baseline, over a paired t-test for $\alpha = 2$.

As shown in the discussion above for Figure 3, RM3-ExtRRF exhibits the least risk-sensitivity, followed by TREC Best and UQV-RRF. We see that while the retrieval effectiveness of RMQV is generally high, and comparable to other systems in Table 2, there is room for improving the risk dimension of our query sampling approach. It is, however, more effective and risk-sensitive than a traditional RM3 query expansion on the target corpus. We plan to explore the relationship between risk-sensitivity, fusion, and relevance modeling in future work.

Figure 2: The different efficiency profiles of our three different query expansion pipelines. RMQV is much more efficient than the plain RM3 and RM3-ExtRRF pipelines because it processes a set of bag-of-words queries rather than long, weighted RM3 queries.

Figure 4: The efficiency/effectiveness trade-off (left) and the efficiency/risk trade-off (right) between our proposed systems and selected baselines. The dashed line represents RRF Fusion across manual query variations (UQV-RRF).

Table 5: Risk sensitivity of baseline systems listed in Table 2. All risk-values are compared using the T_{risk} measure for $\alpha = 2$ against a BM25 baseline on the AP metric.

As observed by Benham and Culpepper [7], there is tension between effectiveness and the corresponding risk value, and our new results reinforce this belief. For example, the RM3-ExtRRF is the most robust run. While it is not the most effective run when comparing systems by AP (this honour belongs to TREC Best), there is a substantial difference in risk in the two systems. This may be happening for a number of different reasons, for example, the TREC Best system may be improving the performance of a few hard topics rather than all topics as a whole. This observation reinforces our belief that better failure analysis experiments should be used when comparing the performance of search systems.

Putting it all together. Figure 4 displays our query sampling approach RMQV in contrast with other retrieval models, with respect to their efficiency-effectiveness and efficiency-risk profiles. In both graphs, the closest data-point to the top-left is the best performing system across both dimensions. Although L2p is efficient, it exhibits high risk. The RMQV approach is only slightly less effective than RM3-ExtRRF, and is approximately three times faster. While the RM3-ExtRRF run exhibits strong risk-sensitivity, it is unclear how to deploy such an expensive process in a real search engine without significant improvements in scalability and efficiency. We, therefore, answer RQ2 in the affirmative, that our approach is fast enough.
5 CONCLUSION

In this work, we have shown how to combine relevance modeling with external corpora and rank fusion to build a prototype system which is efficient, and capable of achieving state-of-the-art effectiveness. Motivated by the premise that human curated query variations often cover the many aspects of a specific information need and provide effective results when combined with data fusion, we propose a fully automated surrogate to this manual process.

Our experiments show that weighted queries perform poorly when using dynamic pruning. To overcome this limitation, we construct multiple external relevance models, and automatically generate query variations using weighted random sampling process. Combining this idea with state-of-the-art indexing techniques, avoiding weighted queries, parallelization, and data fusion allow us to create an entirely new end-to-end search engine that is effective and efficient.

We place our prototype system in the context of strong baselines and show that the retrieval effectiveness is competitive with the state-of-the-art on a classically “hard” test collection — answering RQ2 in the affirmative. Finally, we show that when our approach is evaluated in the three contexts of effectiveness, efficiency and risk-sensitivity, it provides a competitive trade-off profile, answering RQ1 in the affirmative.

Acknowledgements. This work was supported by the Australian Research Council’s Discovery Projects Scheme (DP170102231), by an Australian Government Research Training Program Scholarship, and by a grant from the Mozilla Foundation.

REFERENCES